Principles of Neural Information Theory: Computational Neuroscience and Metabolic Efficiency (Tutorial Introductions)
$ 182
Availability: Currently in Stock
Delivery: 10-20 working days
Condition: USED (All books are in used condition)
Condition - Very Good The item shows wear from consistent use, but it remains in good condition and functions properly. Item may arrive with damaged packaging or be repackaged. It may be marked, have identifying markings on it, or have minor cosmetic damage. It may also be missing some parts/accessories or bundled items.
Principles of Neural Information Theory: Computational Neuroscience and Metabolic Efficiency (Tutorial Introductions)
The brain is the most complex computational machine known to science, even though its components (neurons) are slow and unreliable compared to a laptop computer. In this richly illustrated book, Shannon's mathematical theory of information is used to explore the computational efficiency of neurons, with special reference to visual perception and the efficient coding hypothesis. Evidence from a diverse range of research papers is used to show how information theory defines absolute limits on neural processing; limits which ultimately determine the neuroanatomical microstructure of the eye and brain. Written in an informal style, with a comprehensive glossary, tutorial appendices, and a list of annotated Further Readings, this book is an ideal introduction to the principles of neural information theory.